Social Data Predictive Power Comparison Across Information Channels and User Groups: Evidence from the Bitcoin Market

Authors

  • Peng Xie
  • Jiming Wu
  • Chongqi Wu

Keywords:

Social Media, Digital Currency, User-Generated Content, Text Mining

Abstract

In  the  context  of  Bitcoin,  we  examine  the  relationship  between  Bitcoin  price movement  and  social  data  sentiment.  Baseline  findings  reveal  that  social  media provides value-relevant information in both short-term and long-term predictions. By  comparing the  predictive  power  across  different  information  channels  and different user groups, we found that (1) while speculative information predicts both long-term and short-term returns effectively, fundamental-related information only predicts long-term returns, and that (2) prediction accuracy is higher for less active users than for active users on social media, especially in long-term prediction.

Published

2017-07-01